login
A350194
Numerators of a power series characterizing how powers of the cosine function converge to the Gaussian function.
6
1, -1, 1, 1, -1, -19, 79, 11, -2339, -11813, 677, 2117, -308963, -64604977, 131301607, 263101079, -5614643, -1768132943, 46949081169401, 9606907803497, -10635113572583999, -158812278992229461, 8131167478793551, 9112944418860287, -40395223967437706149
OFFSET
0,6
COMMENTS
See A350154 for the denominators of this sequence of rational coefficients, as well as relevant comments, formulae, and examples.
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
CROSSREFS
Cf. A350154.
Sequence in context: A041698 A041700 A213832 * A372757 A132234 A074822
KEYWORD
frac,sign
AUTHOR
Robert B Fowler, Dec 19 2021.
STATUS
approved