OFFSET
1,1
COMMENTS
The multiplicative persistence of a number mp(n) is the number of times the product-of-digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product-of-digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 5.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181....
Equivalently:
Or:
- These numbers factor into powers of 2, 3, 5 and 7 exclusively.
- p(n) goes to a single digit in 4 steps.
Postulated to be finite and complete.
LINKS
Daniel Mondot, Table of n, a(n) for n = 1..142
Eric Weisstein's World of Mathematics, Multiplicative Persistence
Daniel Mondot, Multiplicative Persistence Tree
EXAMPLE
384 is in this sequence because:
- 384 goes to a single digit in 4 steps: p(384)=96, p(96)=54, p(54)=20, p(20)=0.
- p(886)=384, p(6248)=384, p(18816)=384, etc.
378 is in this sequence because:
- 378 goes to a single digits in 4 steps: p(378)=168, p(168)=48, p(48)=32, p(32)=6.
- p(679)=378, p(2397)=378, p(12379)=378, etc.
MATHEMATICA
mx=10^6; lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}]; (* from A002473 *)
Select[lst, Length@Most@NestWhileList[Times@@IntegerDigits@#&, #, #>9&]==4&] (* Giorgos Kalogeropoulos, Jan 16 2022 *)
PROG
(Python)
from math import prod
from sympy import factorint
def pd(n): return prod(map(int, str(n)))
def ok(n):
if n <= 9 or max(factorint(n)) > 9: return False
return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and pd(r) < 10
print([k for k in range(778000) if ok(k)])
(PARI) pd(n) = if (n, vecprod(digits(n)), 0); \\ A007954
mp(n) = my(k=n, i=0); while(#Str(k) > 1, k=pd(k); i++); i; \\ A031346
isok(k) = (mp(k)==4) && (vecmax(factor(k)[, 1]) <= 7); \\ Michel Marcus, Jan 25 2022
CROSSREFS
Cf. A002473 (7-smooth), A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root), A046513 (all numbers with mp of 4).
KEYWORD
base,nonn
AUTHOR
Daniel Mondot, Dec 18 2021
STATUS
approved