login
A350077
Decimal expansion of infinite sum: 1/(2^(-1)) + 1/(2^(3^(-1))) + 1/(2^(3^(4^(-1)))) + 1/(2^(3^(4^(5^(-1))))) + ...
0
3, 2, 4, 7, 4, 6, 4, 6, 9, 1, 8, 1, 8, 9, 3, 7, 6, 9, 8, 8, 9, 7, 0, 9, 1, 6, 1, 9, 8, 9, 5, 7, 9, 9, 5, 1, 2, 7, 9, 2, 1, 7, 4, 7, 5, 8, 1, 6, 5, 6, 0, 8, 7, 4, 9, 6, 5, 4, 8, 8, 9, 9, 7, 2, 5, 5, 7, 2, 0, 9, 4, 4, 0, 3, 1, 3, 3, 5, 8, 8, 7, 3, 8, 6, 5, 0, 3, 8, 1, 0, 4, 1, 7, 7, 6, 9, 6, 3, 8, 9, 9, 4, 5, 0, 6, 7, 0, 3, 9, 9, 3, 3, 2, 1, 7, 2, 2, 6, 1, 7, 4, 6, 5, 4, 1, 4, 4, 7
OFFSET
1,1
EXAMPLE
3.24746469181893769889709161989...
From Jon E. Schoenfield, Dec 12 2021: (Start)
The partial sum through the 1/(2^(3^(4^(5^(-1))))) term agrees with the infinite sum to more than 250 decimal digits.
.
k Sum_{j=2..k} 1/2^(...^(k^(-1))...) last term added
- ---------------------------------- ----------------------------------
2 2.0 2.0
3 2.79370052598409973737585281963... 0.79370052598409973737585281963...
4 3.19532691964931766504830314874... 0.40162639366521792767245032910...
5 3.24746469181893769889709161989... 0.05213777216962003384878847115...
6 3.24746469181893769889709161989... 3.361969601729727422691...*10^-253
7 3.24746469181893769889709161989... 1/10^(10^31089.314380144389689...)
(End)
CROSSREFS
Sequence in context: A368218 A352419 A209706 * A134571 A054086 A163329
KEYWORD
nonn,cons
AUTHOR
Lukáš Backa, Dec 12 2021
STATUS
approved