login
Numbers k for which the maximal digit in their primorial base expansion (A328114) is greater than or equal to the maximal exponent in the prime factorization of k (A051903).
4

%I #8 Feb 02 2022 21:23:42

%S 1,2,3,4,5,6,7,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,

%T 29,30,31,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55,

%U 56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,84,85,86,87,88,89,90,91,92

%N Numbers k for which the maximal digit in their primorial base expansion (A328114) is greater than or equal to the maximal exponent in the prime factorization of k (A051903).

%C Numbers k for which the maximal prime exponent of A276086(k) is greater than or equivalent to the maximal prime exponent of k, A051903(k).

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%o (PARI)

%o A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o isA350076(n) = (A051903(A276086(n)) >= A051903(n));

%Y Cf. A051903, A276086, A328114, A350070 (characteristic function), A350075 (complement).

%Y Positions of nonnegative terms in A350074.

%Y Cf. also A342006.

%K nonn,base

%O 1,2

%A _Antti Karttunen_, Feb 01 2022