login
A350068
Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A350063(i) = A350063(j), for all i, j >= 1.
2
1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 4, 4, 8, 2, 7, 2, 7, 6, 9, 2, 10, 3, 9, 5, 11, 2, 12, 2, 13, 4, 9, 4, 14, 2, 4, 9, 15, 2, 16, 2, 7, 7, 17, 2, 18, 3, 19, 9, 7, 2, 10, 6, 10, 9, 20, 2, 21, 2, 9, 7, 22, 4, 12, 2, 11, 4, 16, 2, 23, 2, 9, 7, 11, 4, 12, 2, 18, 8, 9, 2, 24, 9, 25, 17, 26, 2, 24, 6, 11, 20, 27, 9
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A046523(n), A350063(n)].
For all i, j >= 1: A305897(i) = A305897(j) => a(i) = a(j).
PROG
(PARI)
up_to = 3003;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A350063(n) = if(1==n, 0, A046523(A000265(A156552(n))));
Aux350068(n) = [A046523(n), A350063(n)];
v350068 = rgs_transform(vector(up_to, n, Aux350068(n)));
A350068(n) = v350068[n];
CROSSREFS
Cf. A000040 (positions of 2's), A001248 (of 3's).
Sequence in context: A363723 A350126 A323914 * A300230 A305897 A355834
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 29 2022
STATUS
approved