login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Part three of the trisection of A017101: a(n) = 19 + 24*n.
2

%I #15 Jan 29 2024 09:02:21

%S 19,43,67,91,115,139,163,187,211,235,259,283,307,331,355,379,403,427,

%T 451,475,499,523,547,571,595,619,643,667,691,715,739,763,787,811,835,

%U 859,883,907,931,955,979,1003,1027,1051,1075

%N Part three of the trisection of A017101: a(n) = 19 + 24*n.

%C The trisection of A017101 = {3 + 8*k}_{k>=0} gives 3*A017077 = {3*(1 + 12*n)}_{n>=0}, {A348845(n)}_{n >= 0} and {a(n)}_{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.

%H Winston de Greef, <a href="/A350051/b350051.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = 19 + 24*n = 19 + A008606(n), for n >= 0

%F a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -5, a(0) = 19.

%F G.f.: (19 + 5*x)/(1-x)^2.

%F E.g.f.: (19 + 24*x)*exp(x).

%t 24 * Range[0, 44] + 19 (* _Amiram Eldar_, Dec 18 2021 *)

%o (PARI) a(n) = 19 + 24*n \\ _Winston de Greef_, Jan 28 2024

%Y Cf. A008606, 3*A017077, A017101, A348845.

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_, Dec 11 2021