login
A350051
Part three of the trisection of A017101: a(n) = 19 + 24*n.
2
19, 43, 67, 91, 115, 139, 163, 187, 211, 235, 259, 283, 307, 331, 355, 379, 403, 427, 451, 475, 499, 523, 547, 571, 595, 619, 643, 667, 691, 715, 739, 763, 787, 811, 835, 859, 883, 907, 931, 955, 979, 1003, 1027, 1051, 1075
OFFSET
0,1
COMMENTS
The trisection of A017101 = {3 + 8*k}_{k>=0} gives 3*A017077 = {3*(1 + 12*n)}_{n>=0}, {A348845(n)}_{n >= 0} and {a(n)}_{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.
FORMULA
a(n) = 19 + 24*n = 19 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -5, a(0) = 19.
G.f.: (19 + 5*x)/(1-x)^2.
E.g.f.: (19 + 24*x)*exp(x).
MATHEMATICA
24 * Range[0, 44] + 19 (* Amiram Eldar, Dec 18 2021 *)
PROG
(PARI) a(n) = 19 + 24*n \\ Winston de Greef, Jan 28 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Dec 11 2021
STATUS
approved