login
A350038
Numbers that are the perimeter of a primitive 60-degree integer triangle.
3
18, 20, 35, 36, 45, 56, 77, 84, 90, 104, 110, 120, 126, 135, 143, 170, 176, 182, 189, 198, 209, 210, 216, 221, 252, 260, 264, 266, 270, 272, 273, 297, 299, 323, 350, 351, 360, 368, 374, 378, 380, 390, 396, 425, 432, 437, 459, 462, 464, 468, 476, 494, 495, 506, 527, 551, 561, 570, 575, 585, 594, 608, 612
OFFSET
1,1
LINKS
EXAMPLE
b(n) = Sum_{k=1..3} A264826(3*n+k-3).
c(n) = Sum_{k=1..3} A201223(3*n+k-3).
b(1) = c(1) = 3+7+8 = 18 = a(1).
b(2) = c(2) = 5+7+8 = 20 = a(2).
b(3) = c(5) = 5+19+21 = 45 = a(5).
b(4) = c(3) = 7+13+15 = 35 = a(3).
b(5) = c(9) = 7+37+40 = 84 = a(8).
b(6) = c(4) = 8+13+15 = 36 = a(4).
PROG
(Ruby)
def A(n)
ary = []
(1..n).each{|i|
(i + 1..n).each{|j|
if i.gcd(j) == 1 && (i - j) % 3 > 0
x, y, z = j * j, i * j, i * i
ary << 2 * x + 5 * y + 2 * z
ary << 3 * x + 3 * y
end
}
}
ary
end
p A(20).uniq.sort[0..100]
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 10 2021
STATUS
approved