login
A349964
a(n) = Sum_{k=0..n} (k*n)^n.
2
1, 1, 20, 972, 90624, 13828125, 3133930176, 988501957072, 414139067400192, 222497518123837665, 149143419250000000000, 122020951254446884154196, 119671520043865789861724160, 138593796657903100873209121453
OFFSET
0,3
FORMULA
a(n) = n^n * [x^n] Sum_{k>=0} (k * x)^k/(1 - k * x) = n^n * A031971(n).
a(n) ~ c * n^(2*n), where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Dec 07 2021
MATHEMATICA
a[n_] := Sum[If[k == n == 0, 1, (k*n)^n], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 07 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (k*n)^n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 07 2021
STATUS
approved