OFFSET
1,1
COMMENTS
a(2) < a(1), but thereafter this function increases monotonically without limit (see Krusemeyer reference).
The record values > 2 of A067095(m) occur when m = 5, 50, 500, 5000, .... This happens precisely when the corresponding numerator A019520(m) goes from 2/4/6/8/10/12/....../999...98 to 2/4/6/8/10/12/....../999...98/1000...00, where here / means concatenation.
If a(n) is a k-digit number (k = A055642(a(n))), then 1.8 * 10^(k-1) < a(n) < 1.9 * 10^(k-1).
If we consider the sequence u(n) = a(n)/10^(k-1) where k = length(a(n)); we have u(n) is increasing with an upper bound 1.9; so, this sequence u(n) is convergent and, conjecture, this limit = 1.81757197277277957... found by Giorgos Kalogeropoulos; now, from this limit, it is possible to get the successive terms of this sequence here.
REFERENCES
Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1001
FORMULA
a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - Giorgos Kalogeropoulos, Dec 10 2021
EXAMPLE
MATHEMATICA
terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
k[q_]:=f[Range[2, 2q, 2]]/f[Range[1, 2q, 2]];
DeleteDuplicates@Table[Floor[k@n], {n, 10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
PROG
(Python)
def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2, 10**(n-2)+1, 2)))//int("".join(str(d) for d in range(1, 10**(n-2), 2))) # Chai Wah Wu, Dec 10 2021
from itertools import count
def A349960(n): # a more efficient implementation
if n <= 2:
return 3-n
a, b = '', ''
for i in count(1, 2):
a += str(i)
b += str(i+1)
ai, bi = int(a), int(b)
if len(a)+n-2 == len(b): return bi//ai
m = 10**(n-2-len(b)+len(a))
lb = bi*m//(ai+1)
ub = (bi+1)*m//ai
if lb == ub: return lb # Chai Wah Wu, Dec 10 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Dec 07 2021
EXTENSIONS
a(5)-a(7) from Michel Marcus, Dec 07 2021
a(8)-a(9) from Martin Ehrenstein, Dec 10 2021
a(10)-a(22) from Chai Wah Wu, Dec 10 2021
STATUS
approved