login
A349654
E.g.f. satisfies: A(x)^2 * log(A(x)) = exp(x) - 1.
9
1, 1, -2, 17, -213, 3712, -82773, 2250565, -72218912, 2671680015, -111950278213, 5240764049094, -271082407059027, 15353947287972373, -945097225235334538, 62820021683240176445, -4484426869618973019249, 342169496779859317566456
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (-2*k+1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = exp( LambertW(2*(exp(x) - 1))/2 ).
G.f.: Sum_{k>=0} (-2*k+1)^(k-1) * x^k/Product_{j=1..k} (1 - j*x).
a(n) ~ -(-1)^n * sqrt(2*exp(1) - 1) * sqrt(log(2) - log(2 - exp(-1))) * n^(n-1) / (2 * exp(n + 1/2) * (log(2) - log(2*exp(1) - 1) + 1)^n). - Vaclav Kotesovec, Nov 24 2021
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
(1-2*m)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 29 2022
MATHEMATICA
a[n_] := Sum[(-2*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-2*k+1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(2*(exp(x)-1))/2)))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-2*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 23 2021
STATUS
approved