login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^6 * A(x)^8.
4

%I #12 Nov 26 2021 05:03:24

%S 1,3,16,160,2216,35110,596016,10573748,193586424,3629709697,

%T 69342483276,1344897261828,26411276859800,524117511080056,

%U 10493756451964088,211719733855698808,4300202981875132408,87854045612854431128,1804215079309443709632

%N G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^6 * A(x)^8.

%C Second binomial transform of A007556.

%F a(n) = Sum_{k=0..n} binomial(n,k) * binomial(8*k,k) * 2^(n-k) / (7*k+1).

%F a(n) = 2^n*F([1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, -n], [2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7], -2^23/7^7), where F is the generalized hypergeometric function. - _Stefano Spezia_, Nov 22 2021

%F a(n) ~ 2^(n - 67/2) * 9212151^(n + 3/2) / (sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - _Vaclav Kotesovec_, Nov 26 2021

%t nmax = 18; A[_] = 0; Do[A[x_] = 1/(1 - 2 x) + x (1 - 2 x)^6 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t Table[Sum[Binomial[n, k] Binomial[8 k, k] 2^(n - k)/(7 k + 1), {k, 0, n}], {n, 0, 18}]

%o (PARI) a(n) = sum(k=0, n, binomial(n,k)*binomial(8*k,k)*2^(n-k)/(7*k+1)); \\ _Michel Marcus_, Nov 23 2021

%Y Cf. A007556, A064613, A346650, A346762, A349581, A349582, A349584, A349590.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Nov 22 2021