login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349584
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^4 * A(x)^6.
4
1, 3, 14, 107, 1106, 13173, 168820, 2264298, 31356818, 444803666, 6429510234, 94356870748, 1402149248128, 21055387206719, 319007902203196, 4870481885025752, 74858763620576738, 1157339247553310574, 17985974981514604660, 280813589679135551721
OFFSET
0,2
COMMENTS
Second binomial transform of A002295.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(6*k,k) * 2^(n-k) / (5*k+1).
a(n) = 2^n*F([1/6, 1/3, 1/2, 2/3, 5/6, -n], [2/5, 3/5, 4/5, 1, 6/5], -3^6*(2/5)^5), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 22 2021
a(n) ~ 2^(n - 15/2) * 26453^(n + 3/2) / (6561 * sqrt(3*Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Nov 26 2021
MATHEMATICA
nmax = 19; A[_] = 0; Do[A[x_] = 1/(1 - 2 x) + x (1 - 2 x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[6 k, k] 2^(n - k)/(5 k + 1), {k, 0, n}], {n, 0, 19}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(6*k, k)*2^(n-k)/(5*k+1)); \\ Michel Marcus, Nov 23 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 22 2021
STATUS
approved