login
Least positive integer m such that the n numbers 33*k^2*(k^3+1) (k = 1..n) are pairwise distinct modulo m.
2

%I #7 Nov 27 2021 06:46:58

%S 1,4,7,7,13,13,13,13,13,31,41,41,61,61,61,61,61,61,61,73,101,137,137,

%T 137,137,137,137,137,137,233,233,233,233,233,233,349,349,349,349,349,

%U 349,349,349,349,349,349,349,349,349,349,349,349,349,349,547,547,547,547,547,547,547,547,547,547,859,859,859,859,859,859

%N Least positive integer m such that the n numbers 33*k^2*(k^3+1) (k = 1..n) are pairwise distinct modulo m.

%C Conjecture: a(n) is prime for each n > 2.

%C We have verified this for n up to 10^4.

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2013.02.003">On functions taking only prime values</a>, J. Number Theory 133(2013), no.8, 2794-2812.

%H Zhi-Wei Sun, <a href="http://hitpress.hit.edu.cn/2021/1015/c12593a261001/page.htm">New Conjectures in Number Theory and Combinatorics</a> (in Chinese), Harbin Institute of Technology Press, 2021.

%H Quan-Hui Yang and Lilu Zhao, <a href="http://arxiv.org/abs/2111.02746">On a conjecture of Sun involving powers of three</a>, arXiv:2111.02746 [math.NT], 2021.

%e a(2) = 4 since 33*1^2*(1^3+1) = 66 and 33*2^2*(2^3+1) = 1188 are incongruent modulo 4, but they are congruent modulo each of 1, 2 and 3.

%t f[k_]:=f[k]=33*k^2*(k^3+1);

%t U[m_,n_]:=U[m,n]=Length[Union[Table[Mod[f[k],m],{k,1,n}]]]

%t tab={};s=1;Do[m=s;Label[bb];If[U[m,n]==n,s=m;tab=Append[tab,s];Goto[aa]];m=m+1;Goto[bb];Label[aa],{n,1,70}];Print[tab]

%Y Cf. A000040, A000290, A001093, A208643, A349530, A349459.

%K nonn

%O 1,2

%A _Zhi-Wei Sun_, Nov 21 2021