OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..331
FORMULA
E.g.f.: (-LambertW(3*(-exp(x) + 1)) / (3*(exp(x) - 1)))^(1/3).
E.g.f.: exp(-LambertW(3 - 3*exp(x))/3).
a(n) ~ c * d^n * n! / n^(3/2), where d = 1/log(1 + 1/(3*exp(1))) and c = exp(1/3) * sqrt((1 + 3*exp(1)) * log(1 + 1/(3*exp(1))) / (2*Pi))/3 = 0.190981550465823640438134269765128596177617920807463710992027181154754728...
a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3*exp(n - 1/3) * log(1 + 1/(3*exp(1)))^(n - 1/2)).
E.g.f. satisfies: log(A(x)) = (exp(x) - 1) * A(x)^3.
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k/Product_{j=1..k} (1 - j*x). - Seiichi Manyama, Nov 20 2021
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
(3*m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
MATHEMATICA
Table[Sum[(3*k+1)^(k-1)*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[(-LambertW[3*(-E^x + 1)]/(3*(E^x - 1)))^(1/3), {x, 0, nmax}], x] * Range[0, nmax]!
PROG
(PARI) a(n) = sum(k=0, n, (3*k+1)^(k-1)*stirling(n, k, 2)); \\ Seiichi Manyama, Nov 20 2021
(PARI) N=20; x='x+O('x^N); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Nov 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 20 2021
STATUS
approved