login
A349445
Dirichlet convolution of A001511 (the 2-adic valuation of 2n) with A349134 (the Dirichlet inverse of Kimberling's paraphrases).
5
1, 1, -1, 1, -2, -1, -3, 1, -2, -2, -5, -1, -6, -3, 0, 1, -8, -2, -9, -2, 0, -5, -11, -1, -6, -6, -4, -3, -14, 0, -15, 1, 0, -8, 0, -2, -18, -9, 0, -2, -20, 0, -21, -5, 2, -11, -23, -1, -12, -6, 0, -6, -26, -4, 0, -3, 0, -14, -29, 0, -30, -15, 3, 1, 0, 0, -33, -8, 0, 0, -35, -2, -36, -18, 4, -9, 0, 0, -39, -2, -8
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{d|n} A001511(n/d) * A349134(d).
If p odd prime, a(p) = (1-p)/2. - Bernard Schott, Nov 19 2021
MATHEMATICA
k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, IntegerExponent[2*#, 2]*kinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A003602(n) = (1+(n>>valuation(n, 2)))/2;
memoA349134 = Map();
A349134(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349134, n, &v), v, v = -sumdiv(n, d, if(d<n, A003602(n/d)*A349134(d), 0)); mapput(memoA349134, n, v); (v)));
A349445(n) = sumdiv(n, d, A001511(n/d)*A349134(d));
CROSSREFS
Cf. A001511, A003602, A349134, A349444 (Dirichlet inverse), A349446 (sum with it).
Cf. also A349432, A349448.
Sequence in context: A124579 A035306 A101691 * A205379 A238881 A070094
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 18 2021
STATUS
approved