OFFSET
1,4
COMMENTS
With a(1) = 1 instead of 0, this would be the Dirichlet convolution of A129283 (A003415(n)+n) with A055615. Thus when we subtract A063524 from that convolution, we get this sequence. (See also A349434). Compare also to the convolution of A069359 (sequence agreeing with A003415 on squarefree numbers) with A055615, which is the characteristic function of primes, A010051. - Antti Karttunen, Nov 20 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
P. Haukkanen, J. K. Merikoski and T. Tossavainen, Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative, Mathematical Communications 25 (2020), 107-115.
FORMULA
a(n) = 0 unless n is a prime power (A246655), in which case a(p^e) = p^(e-1). - Sebastian Karlsson, Nov 19 2021
Dirichlet g.f.: Sum_{p prime} 1/(p^s-p) [Follows from the D.g.f. of A003415 proved by Haukkanen et al.]. - Sebastian Karlsson, Nov 25 2021
Sum_{k=1..n} a(k) has an average value c*n, where c = A137245 = Sum_{primes p} 1/(p*log(p)) = 1.63661632335... - Vaclav Kotesovec, Mar 03 2023
MATHEMATICA
f[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, # * MoebiusMu[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A055615(n) = (n*moebius(n));
(PARI) A349394(n) = { my(p=0, e); if((e=isprimepower(n, &p)), p^(e-1), 0); }; \\ (After Sebastian Karlsson's new formula) - Antti Karttunen, Nov 20 2021
(Haskell)
import Math.NumberTheory.Primes
a n = case factorise n of
[(p, e)] -> unPrime p^(e-1) :: Int
_ -> 0 -- Sebastian Karlsson, Nov 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 18 2021
EXTENSIONS
Added Sebastian Karlsson's formula as the new primary definition - Antti Karttunen, Nov 20 2021
STATUS
approved