login
A349370
Dirichlet convolution of Kimberling's paraphrases (A003602) with itself.
7
1, 2, 4, 3, 6, 8, 8, 4, 14, 12, 12, 12, 14, 16, 28, 5, 18, 28, 20, 18, 38, 24, 24, 16, 35, 28, 48, 24, 30, 56, 32, 6, 58, 36, 60, 42, 38, 40, 68, 24, 42, 76, 44, 36, 108, 48, 48, 20, 66, 70, 88, 42, 54, 96, 92, 32, 98, 60, 60, 84, 62, 64, 148, 7, 108, 116, 68, 54, 118, 120, 72, 56, 74, 76, 176, 60, 126, 136, 80, 30
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} A003602(n/d) * A003602(d).
MATHEMATICA
k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * k[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
PROG
(PARI)
A003602(n) = (1+(n>>valuation(n, 2)))/2;
A349370(n) = sumdiv(n, d, A003602(n/d)*A003602(d));
CROSSREFS
Cf. A347954, A347955, A347956, A349136, A349371, A349372, A349373, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.
Sequence in context: A369825 A266411 A264740 * A137621 A242705 A350748
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved