OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(7*k,k) / (6*k+1).
a(n) = (-1)^(n+1)* F([8/7, 9/7, 10/7, 11/7, 12/7, 13/7, 1-n], [4/3, 3/2, 5/3, 11/6, 2, 13/6], 7^7/6^6), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 15 2021
a(n) ~ 776887^(n + 1/2) / (343 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Nov 17 2021
MAPLE
a:= n-> coeff(series(RootOf(1+x*A^7/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = 1 + x A[x]^7/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 15 2021
STATUS
approved