login
A349348
Dirichlet inverse of A252463, where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.
4
1, -1, -2, -1, -3, 1, -5, -1, 0, 1, -7, 2, -11, 3, 6, -1, -13, -1, -17, 3, 10, 3, -19, 3, 0, 9, 0, 5, -23, -1, -29, -1, 14, 9, 15, 1, -31, 15, 22, 5, -37, -3, -41, 7, 0, 15, -43, 4, 0, -4, 26, 11, -47, -3, 21, 7, 34, 17, -53, -2, -59, 27, 0, -1, 33, -3, -61, 13, 38, -3, -67, 2, -71, 25, 0, 17, 35, -9, -73, 7, 0, 33
OFFSET
1,3
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A252463(n/d) * a(d).
a(n) = A349349(n) - A252463(n).
For all n >= 1, a(2n-1) = A349125(2n-1).
PROG
(PARI)
up_to = 20000;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A252463(n) = if(!(n%2), n/2, A064989(n));
v349348 = DirInverseCorrect(vector(up_to, n, A252463(n)));
A349348(n) = v349348[n];
CROSSREFS
Coincides with A349125 on odd numbers.
Cf. also A348045, A349437, A349438.
Sequence in context: A110977 A295785 A069230 * A242180 A163961 A354366
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved