login
A349343
Dirichlet inverse of A193356, which is defined as n if n is odd, 0 if n is even.
5
1, 0, -3, 0, -5, 0, -7, 0, 0, 0, -11, 0, -13, 0, 15, 0, -17, 0, -19, 0, 21, 0, -23, 0, 0, 0, 0, 0, -29, 0, -31, 0, 33, 0, 35, 0, -37, 0, 39, 0, -41, 0, -43, 0, 0, 0, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 0, -59, 0, -61, 0, 0, 0, 65, 0, -67, 0, 69, 0, -71, 0, -73, 0, 0, 0, 77, 0, -79, 0, 0, 0, -83, 0, 85, 0, 87, 0, -89
OFFSET
1,3
LINKS
FORMULA
a(2n) = 0, a(2n+1) = A349341(2n+1) for all n >= 1.
Multiplicative with a(p^e) = 0 if p=2 or e>1, otherwise a(p) = -p. - (After Sebastian Karlsson's similar formula for A349341).
MATHEMATICA
a[1]=1; a[n_]:=-DivisorSum[n, If[OddQ[n/#], n/#, 0]*a@#&, #<n&]; Array[a, 89] (* Giorgos Kalogeropoulos, Nov 15 2021 *)
f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
PROG
(PARI) A349343(n) = { my(f = factor(n)); prod(i=1, #f~, if((2==f[i, 1])||(f[i, 2]>1), 0, -f[i, 1])); };
CROSSREFS
Agrees with A349341 on odd numbers.
Sequence in context: A175919 A086664 A164736 * A109753 A318517 A245494
KEYWORD
sign,easy,mult
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved