OFFSET
1,8
LINKS
William Y. C. Chen, Neil J. Y. Fan, and Jeffrey Y. T. Jia, The generating function for the Dirichlet series Lm(s), Mathematics of Computation, Vol. 81, No. 278, pp. 1005-1023, April 2012.
Ruth Lawrence and Don Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
EXAMPLE
Seen as an array:
[1] 1, 1, 1, 2, 5, 16, 61, 272, ... [A000111]
[2] 1, 1, 3, 11, 57, 361, 2763, 24611, ... [A001586]
[3] 1, 2, 8, 46, 352, 3362, 38528, 515086, ... [A007289]
[4] 1, 4, 16, 128, 1280, 16384, 249856, 4456448, ... [A349264]
[5] 2, 4, 30, 272, 3522, 55744, 1066590, 23750912, ... [A349265]
[6] 2, 6, 46, 522, 7970, 152166, 3487246, 93241002, ... [A001587]
[7] 1, 8, 64, 904, 15872, 355688, 9493504, 296327464, ... [A349266]
[8] 2, 8, 96, 1408, 29184, 739328, 22634496, 806453248, ... [A349267]
[9] 2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, ... [A349268]
.
Seen as a triangle:
[1] 1;
[2] 1, 1;
[3] 1, 1, 1;
[4] 1, 2, 3, 2;
[5] 2, 4, 8, 11, 5;
[6] 2, 4, 16, 46, 57, 16;
[7] 1, 6, 30, 128, 352, 361, 61;
[8] 2, 8, 46, 272, 1280, 3362, 2763, 272;
[9] 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385;
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 23 2021
STATUS
approved