login
A349202
Numbers k of the form (x + y)*(x^2 + y^2) such that (x + y) and (x^2 + y^2) are primes.
3
4, 15, 65, 85, 203, 259, 671, 803, 1111, 1157, 1261, 1417, 2533, 2669, 3439, 3667, 3893, 4369, 4579, 5567, 6187, 6371, 8027, 9407, 12209, 12557, 13369, 16151, 16771, 17429, 18383, 18589, 20491, 21257, 21731, 26233, 28453, 29489, 30673, 34973, 36121, 36889
OFFSET
1,1
LINKS
FORMULA
Intersection of A001358 and A348897.
EXAMPLE
1157 is in this sequence because 1157 = (5 + 8)*(5^2 + 8^2) = 13*89.
PROG
(Julia) # Returns the terms less than or equal to b^3.
using Nemo
function A349202List(b)
b3 = b^3; R = Int[]
for n in 1:b
for k in 0:n
a = (n + k) * (n^2 + k^2)
a > b3 && break
isprime(n+k) && isprime(n^2 + k^2) && push!(R, a)
end end
sort(R) end
A349202List(34) |> println
CROSSREFS
Sequence in context: A341922 A007526 A233536 * A318121 A357785 A369229
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 11 2021
STATUS
approved