login
A349178
Nonexponential harmonic numbers: numbers k that are not prime powers such that the harmonic mean of the nonexponential divisors of k is an integer.
0
1645, 5742, 6336, 8925, 9450, 88473
OFFSET
1,1
COMMENTS
The prime powers are excluded since the primes and the squares of primes have a single nonexponential divisor (the number 1).
a(7) > 6.6*10^10, if it exists.
EXAMPLE
1645 is a term since the set of its nonexponential divisors is {1, 5, 7, 35, 47, 235, 329} and the harmonic mean of this set, 5, is an integer.
MATHEMATICA
dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; neDivs[1] = {0}; neDivs[n_] := Module[{d = Divisors[n]}, Select[d, ! expDivQ[n, #] &]]; Select[Range[10^4], Length[(d = neDivs[#])] > 1 && IntegerQ @ HarmonicMean[d] &]
CROSSREFS
Sequence in context: A252197 A135016 A238066 * A247077 A093059 A255620
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Nov 09 2021
STATUS
approved