OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so these are also Heinz numbers of partitions with at most one odd conjugate part.
EXAMPLE
The terms and their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
15: {2,3}
16: {1,1,1,1}
18: {1,2,2}
24: {1,1,1,2}
25: {3,3}
32: {1,1,1,1,1}
35: {3,4}
36: {1,1,2,2}
49: {4,4}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Select[Range[100], ats[Reverse[primeMS[#]]]<=1&]
CROSSREFS
The case of alternating sum 0 is A000290.
These partitions are counted by A100824.
These are the positions of 0's and 1's in A344616.
The case of alternating sum 1 is A345958.
The conjugate partitions are ranked by A349150.
A000041 counts integer partitions.
A122111 is a representation of partition conjugation.
A257991 counts odd prime indices.
A316524 gives the alternating sum of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.
A349157 ranks partitions with as many even parts as odd conjugate parts.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 10 2021
STATUS
approved