login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{d|n} d * A348507(n/d), where A348507(n) = A003959(n) - n, where A003959 is fully multiplicative with a(p) = (p+1).
7

%I #14 Nov 19 2021 14:05:28

%S 0,1,1,7,1,11,1,33,10,15,1,61,1,19,17,131,1,77,1,89,21,27,1,263,16,31,

%T 67,117,1,145,1,473,29,39,25,379,1,43,33,395,1,189,1,173,137,51,1,997,

%U 22,155,41,201,1,443,33,527,45,63,1,743,1,67,177,1611,37,277,1,257,53,265,1,1541,1,79,187,285,37,321

%N a(n) = Sum_{d|n} d * A348507(n/d), where A348507(n) = A003959(n) - n, where A003959 is fully multiplicative with a(p) = (p+1).

%C Dirichlet convolution of A348507 with the identity function, A000027.

%C Dirichlet convolution of sigma with A348971.

%H Antti Karttunen, <a href="/A349140/b349140.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = Sum_{d|n} d * A348507(n/d).

%F a(n) = Sum_{d|n} A000203(d) * A348971(n/d).

%F a(n) = Sum_{d|n} A349141(d).

%F For all n >= 1, a(n) >= A347130(n) >= A348980(n).

%F a(n) = A349170(n) - A038040(n). - _Antti Karttunen_, Nov 15 2021

%t f[p_, e_] := (p + 1)^e; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, #*s[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 08 2021 *)

%o (PARI)

%o A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };

%o A348507(n) = (A003959(n) - n);

%o A349140(n) = sumdiv(n,d,d*A348507(n/d));

%Y Cf. A000027, A000203, A003959, A038040, A348507, A348971, A349141 (Möbius transform), A349142, A349143, A349170.

%Y Cf. also A347130, A348980.

%K nonn

%O 1,4

%A _Antti Karttunen_, Nov 08 2021