login
A349054
Number of alternating strict compositions of n. Number of alternating (up/down or down/up) permutations of strict integer partitions of n.
16
1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 155, 193, 255, 339, 443, 569, 841, 1019, 1365, 1743, 2295, 2879, 3785, 5151, 6417, 8301, 10625, 13567, 17229, 21937, 27509, 37145, 45425, 58345, 73071, 93409, 115797, 147391, 182151, 229553, 297061, 365625
OFFSET
0,4
COMMENTS
A strict composition of n is a finite sequence of distinct positive integers summing to n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The case starting with an increase (or decrease, it doesn't matter in the enumeration) is counted by A129838.
FORMULA
a(n) = 2 * A129838(n) - 1.
G.f.: Sum_{n>0} A001250(n)*x^(n*(n+1)/2)/Product_{k=1..n}(1-x^k).
EXAMPLE
The a(1) = 1 through a(7) = 11 compositions:
(1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,3,2) (5,2)
(2,1,3) (6,1)
(2,3,1) (1,4,2)
(3,1,2) (2,1,4)
(2,4,1)
(4,1,2)
MAPLE
g:= proc(u, o) option remember;
`if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
end:
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 2, 0), b(n-k, k)+b(n-k, k-1)))
end:
a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2))-1:
seq(a(n), n=0..46); # Alois P. Heinz, Dec 22 2021
MATHEMATICA
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], UnsameQ@@#&], wigQ]], {n, 0, 15}]
CROSSREFS
Ranking sequences are put in parentheses below.
This is the strict case of A025047/A025048/A025049 (A345167).
This is the alternating case of A032020 (A233564).
The unordered case (partitions) is A065033.
The directed case is A129838.
A001250 = alternating permutations (A349051), complement A348615 (A350250).
A003242 = Carlitz (anti-run) compositions, complement A261983.
A011782 = compositions, unordered A000041.
A345165 = partitions without an alternating permutation (A345171).
A345170 = partitions with an alternating permutation (A345172).
A345192 = non-alternating compositions (A345168).
A345195 = non-alternating anti-run compositions (A345169).
A349800 = weakly but not strongly alternating compositions (A349799).
A349052 = weakly alternating compositions, complement A349053 (A349057).
Sequence in context: A319794 A072706 A117433 * A159284 A078028 A317142
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 21 2021
STATUS
approved