login
A349035
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(-2*x)).
2
1, 1, 2, 1, 9, 6, 165, 97, 10970, 8617, 2838793, 1206206, 2912348749, 3338391105, 11938619074866, -3485058191151, 195607339607544393, 505337929567029942, 12820529140255160177781, -40595263531274884237983, 3360756421633193695872693450
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-2} (-2)^k * a(k) * a(n-k-2).
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 - x - x^2 A[-2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[(-2)^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 06 2021
STATUS
approved