%I #16 Aug 21 2023 08:22:53
%S 1,4,22,152,1161,9460,80550,708172,6379368,58576168,546215580,
%T 5158542152,49239812893,474285453628,4604149947276,44999181550032,
%U 442430807369519,4372944634271688,43425156714959956,433049078716727332,4334925824762251939
%N G.f. satisfies A(x) = 1/(1 - x/(1 - x*A(x))^3)^4.
%H Seiichi Manyama, <a href="/A349022/b349022.txt">Table of n, a(n) for n = 0..972</a>
%F If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
%p A349022 := proc(n)
%p add(binomial(4*n-3*(k-1),k)*binomial(n+2*k-1,n-k)/(n-k+1),k=0..n) ;
%p end proc:
%p seq(A349022(n),n=0..40) ; # _R. J. Mathar_, Jan 25 2023
%o (PARI) a(n, s=3, t=4) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
%Y Cf. A006632, A161797, A161798.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Nov 06 2021