login
a(n) = usigma(A276086(n)), where usigma (A034448) is multiplicative with a(p^e) = (p^e)+1, and A276086 gives the prime product form of primorial base expansion of n.
4

%I #9 Nov 08 2021 08:18:08

%S 1,3,4,12,10,30,6,18,24,72,60,180,26,78,104,312,260,780,126,378,504,

%T 1512,1260,3780,626,1878,2504,7512,6260,18780,8,24,32,96,80,240,48,

%U 144,192,576,480,1440,208,624,832,2496,2080,6240,1008,3024,4032,12096,10080,30240,5008,15024,20032,60096,50080,150240,50,150

%N a(n) = usigma(A276086(n)), where usigma (A034448) is multiplicative with a(p^e) = (p^e)+1, and A276086 gives the prime product form of primorial base expansion of n.

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%F a(n) = A034448(A276086(n)).

%o (PARI) A348996(n) = { my(m=1, p=2); while(n, if(n%p, m *= (1+(p^(n%p)))); n = n\p; p = nextprime(1+p)); (m); };

%Y Cf. A034448, A276086, A348997, A349000.

%Y Cf. also A324653, A346470, A348949.

%K nonn,base

%O 0,2

%A _Antti Karttunen_, Nov 07 2021