login
A348948
a(n) = sigma(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.
4
1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 20, 1, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 20, 1, 5, 1, 1, 1, 1, 1, 1, 1, 127, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 31, 121, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 217
OFFSET
1,8
COMMENTS
Denominator of ratio A348944(n) / A000203(n).
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 91 <> 1 = a(4)*a(9).
FORMULA
a(n) = A000203(n) / A348946(n) = A000203(n) / gcd(A000203(n), A348944(n)).
MATHEMATICA
f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, (Times @@ f2 @@@ f + Times @@ f3 @@@ f) / 2]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
A348948(n) = { my(s=sigma(n)); (s/gcd(s, A348944(n))); };
CROSSREFS
Sequence in context: A354987 A361793 A257099 * A291578 A165485 A179947
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 05 2021
STATUS
approved