login
A348937
a(n) = A003961(n) - A003415(n), where A003961 shifts the prime factorization of n one step towards larger primes, and A003415 gives the arithmetic derivative of n.
3
1, 2, 4, 5, 6, 10, 10, 15, 19, 14, 12, 29, 16, 24, 27, 49, 18, 54, 22, 39, 45, 26, 28, 91, 39, 36, 98, 67, 30, 74, 36, 163, 51, 38, 65, 165, 40, 48, 69, 121, 42, 124, 46, 69, 136, 62, 52, 293, 107, 102, 75, 97, 58, 294, 75, 205, 93, 62, 60, 223, 66, 78, 224, 537, 101, 134, 70, 99, 119, 172, 72, 519, 78, 84, 190, 127
OFFSET
1,2
FORMULA
a(n) = A003961(n) - A003415(n).
a(n) = A336853(n) - A168036(n).
a(n) = A286385(n) + A343224(n).
MATHEMATICA
f1[p_, e_] := e/p; f2[p_, e_] := NextPrime[p]^e; a[n_] := Times @@ f2 @@@ (f = FactorInteger[n]) - n * Plus @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A348937(n) = (A003961(n) - A003415(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 06 2021
STATUS
approved