OFFSET
1,1
COMMENTS
Any hypothetical odd term y of A005820 must by necessity be a square. If y is also a nonmultiple of 3, then the square root x = A000196(y) of such a number y must satisfy the condition that for all nontrivial unitary divisor pairs d and x/d [with gcd(d,x/d) = 1, 1 < d < x], the other divisor should reside in this sequence, and the other divisor in A348934. The explanation is similar to the one given in A348738. See also comments in A348935.
MATHEMATICA
s[n_] := n / 3^IntegerExponent[n, 3]; Select[Range[400], MemberQ[{1, 5}, Mod[#, 6]] && s[DivisorSigma[1, #^2]] < #^2 &] (* Amiram Eldar, Nov 04 2021 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 04 2021
STATUS
approved