login
A348754
Numbers k congruent to 1 or 5 mod 6, for which A064989(A064989(sigma(k))) > A064989(A064989(k)), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.
5
25, 49, 121, 169, 175, 275, 289, 325, 625, 841, 925, 1225, 1445, 1525, 1675, 1681, 1825, 2401, 3025, 3125, 3481, 3757, 3925, 4075, 4225, 4375, 4825, 5041, 5275, 5929, 6125, 6875, 6925, 7075, 7225, 7825, 7921, 8125, 8275, 8281, 9025, 9925, 10201, 10525, 10625, 10693, 11425, 11875, 12005, 12025, 13075, 13225, 13475
OFFSET
1,1
COMMENTS
Sequence A003961(A003961(A348752(n))), n=1.., sorted into ascending order.
Not a subsequence of A348749. The first terms that occur here but not there are: 169, 175, 275, 1675, 3757, 4075, 5275, 7075, 8275, 10693, 12025, ...
MATHEMATICA
f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[15000], MemberQ[{1, 5}, Mod[#, 6]] && s[s[DivisorSigma[1, #]]] > s[s[#]] &] (* Amiram Eldar, Nov 04 2021 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
isA348754(n) = ((n%2)&&(n%3)&&(A064989(A064989(sigma(n))) > A064989(A064989(n))));
CROSSREFS
Cf. also A348749, A348932, A348936 (square roots of squares present).
Sequence in context: A110013 A374289 A109861 * A106564 A308177 A104777
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 04 2021
STATUS
approved