login
a(n) is the least factor among all the products A307720(k) * A307720(k+1) equal to n.
2

%I #10 Oct 25 2021 11:06:44

%S 1,1,1,2,1,2,1,2,3,2,1,3,1,2,3,2,1,3,1,4,3,2,1,3,5,2,3,4,1,5,1,4,3,2,

%T 5,4,1,2,3,5,1,6,1,4,5,2,1,6,7,5,3,4,1,6,5,7,3,2,1,6,1,2,7,8,5,6,1,4,

%U 3,7,1,8,1,2,5,4,7,6,1,8,9,2,1,7,5,2,3

%N a(n) is the least factor among all the products A307720(k) * A307720(k+1) equal to n.

%C We know there are n ways to get n as a product of terms A307720(k)*A307720(k+1) for various k's. Look at these 2*n numbers from A307720. Then a(n) is the smallest of them.

%H Rémy Sigrist, <a href="/A348581/b348581.txt">Table of n, a(n) for n = 1..10000</a>

%H Rémy Sigrist, <a href="/A348581/a348581.txt">C program for A348581</a>

%F a(p) = 1 for any prime number p.

%F a(n) * A348582(n) = n.

%e For n = 6:

%e - we have the following products equal to 6:

%e A307720(7) * A307720(8) = 3 * 2 = 6

%e A307720(12) * A307720(13) = 2 * 3 = 6

%e A307720(13) * A307720(14) = 3 * 2 = 6

%e A307720(14) * A307720(15) = 2 * 3 = 6

%e A307720(15) * A307720(16) = 3 * 2 = 6

%e A307720(16) * A307720(17) = 2 * 3 = 6

%e - the corresponding distinct factors are 2 and 3,

%e - hence a(6) = 2.

%o (C) See Links section.

%Y Cf. A307720, A307730, A348582.

%K nonn

%O 1,4

%A _Rémy Sigrist_ and _N. J. A. Sloane_, Oct 24 2021