Derivation of the recurrence in A 348533
$\mathrm{T}(\mathrm{m}+1, \mathrm{k})=\frac{\mathrm{k} \cdot \mathrm{T}(\mathrm{m}, \mathrm{k})+\mathrm{e}}{k-1}, \mathrm{~S}(\mathrm{~m}+1, \mathrm{k})=1+(\mathrm{S}(\mathrm{m}, \mathrm{k})+\mathrm{e}-1) \bmod \mathrm{T}(\mathrm{m}+1, \mathrm{k})$ with $\mathrm{e}=-\mathrm{p}$ if $\mathrm{S}(\mathrm{m}, \mathrm{k})>\mathrm{p}$ and $\mathrm{e}=\mathrm{k}-1-\mathrm{p}$ otherwise, $\mathrm{p}=\mathrm{T}(\mathrm{m}, \mathrm{k}) \bmod (\mathrm{k}-1)$
Start: $\mathrm{T}(1, \mathrm{k})=\mathrm{S}(1, \mathrm{k})=1$.

I) Basic recurrence for any number of people

N people, every k-th person is removed, survivor: $\mathrm{s}(\mathrm{N})$
The first line in the following table shows the order of N people after the first victim, say number x , has been removed. The counting is continued with number $\mathrm{x}+1$. The second line shows the initial order of $\mathrm{N}-1$ people.

N	$:$	$x+1$	$x+2$	\ldots	N	1	2	\ldots
$N-1$	1	2	\ldots	$N-x+1$	$N-x+2$	$N-x+3$	\ldots	$N-2$
$N-1$								

If $\mathrm{k}=0 \bmod \mathrm{~N}$ then $\mathrm{x}=\mathrm{N}$ else $\mathrm{x}=\mathrm{k} \bmod \mathrm{N}$. Merged:
(1) $x=1+(k-1) \bmod N$

For cyclic reasons, $\mathrm{s}(\mathrm{N}-1)$ and $\mathrm{s}(\mathrm{N})$ must be located in the same column.
This yields $s(N)=1+(s(N-1)+x-1) \bmod N$.
Inserting formula (1) leads to the basic recurrence
(2) $s(N)=1+(s(N-1)+k-1) \bmod N$, starting with $s(1)=1$.

Example: $\mathrm{k}=4$
$s(2)=1+4 \bmod 2=1$
$s(3)=1+4 \bmod 3=2$
$s(4)=1+5 \bmod 4=2$ etc.
More terms:
$\mathrm{N}=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$
$s(N)=1,1,2,2,1,5,2,6,1,5,9,1,5,9,13,1,5,9,13,17,21,3$
II) Arithmetic progression of survivers' numbers

For $\mathrm{k}=4$, the numbers of people $\mathrm{T}(\mathrm{m}, \mathrm{k})$ with survivor's number $\mathrm{S}(\mathrm{m}, \mathrm{k})<\mathrm{k}$ are (see table above):
$T(m, 4)=1,2,3,4,5,7,9,12,16,22, \ldots$ with
$\mathrm{S}(\mathrm{m}, 4)=1,1,2,2,1,2,1,1,1,3,$.
Generally, for $\mathrm{T}(\mathrm{m}, \mathrm{k}) \leq \mathrm{N}<\mathrm{T}(\mathrm{m}+1, \mathrm{k}), \mathrm{s}(\mathrm{N})$ is an arithmetic progression with difference k , starting with $\mathrm{S}(\mathrm{m}, \mathrm{k}): \mathrm{s}(\mathrm{N})=\mathrm{S}(\mathrm{m}, \mathrm{k})+\mathrm{k} \cdot(\mathrm{N}-\mathrm{T}(\mathrm{m}, \mathrm{k}))$.
Example k=4, N=2021
We find $\mathrm{T}(25,4)=1635 \leq 2021<2180=\mathrm{T}(26,4)$ with $\mathrm{S}(25,4)=2$.
Survivor's number: $2+4 \cdot(2021-1635)=1546$.

III) Recurrence for $\mathrm{T}(\mathrm{m}, \mathrm{k})$ and $\mathrm{S}(\mathrm{m}, \mathrm{k})$

The progression collapses when $N=T(m+1, k)$ because of "mod N " in formula (2). A new progression starts with

$$
\mathrm{s}(\mathrm{~N})=\mathrm{S}(\mathrm{~m}+1, \mathrm{k})=\mathrm{S}(\mathrm{~m}, \mathrm{k})+\mathrm{k} \cdot(\mathrm{~T}(\mathrm{~m}+1, \mathrm{k})-\mathrm{T}(\mathrm{~m}, \mathrm{k}))-\mathrm{T}(\mathrm{~m}+1, \mathrm{k})(<\mathrm{k})
$$

For this, we have to presume $m \geq k$, otherwise the progression is empty.
With $e(m)=S(m+1, k)-S(m, k)$, we yield

$$
\mathrm{e}(\mathrm{~m})=\mathrm{k} \cdot(\mathrm{~T}(\mathrm{~m}+1, \mathrm{k})-\mathrm{T}(\mathrm{~m}, \mathrm{k}))-\mathrm{T}(\mathrm{~m}+1, \mathrm{k}) \Rightarrow \mathrm{T}(\mathrm{~m}+1, \mathrm{k})=\frac{\mathrm{k} \cdot \mathrm{~T}(\mathrm{~m}, \mathrm{k})+\mathrm{e}(\mathrm{~m})}{\mathrm{k}-1}
$$

Let $p(m)=T(m, k) \bmod (k-1)$. Then, as $T(m+1, k)$ is an integer:
(3a) $e(m)=-p(m)$ if $S(m, k)>p(m)$ or $e(m)=k-1-p(m)$ otherwise.
Note that $0<\mathrm{S}(\mathrm{m}, \mathrm{k})<\mathrm{k}$ and $0<\mathrm{S}(\mathrm{m}+1, \mathrm{k})<\mathrm{k}$ implies $0 \leq \operatorname{abs}(\mathrm{e}(\mathrm{m}))<\mathrm{k}-1$.
Hence, with (3a), we yield the recurrence:
(3b) $\mathrm{T}(\mathrm{m}+1, \mathrm{k})=\frac{\mathrm{k} \cdot \mathrm{T}(\mathrm{m}, \mathrm{k})+\mathrm{e}(\mathrm{m})}{k-1}$
(3c) $S(m+1, k)=S(m, k)+e(m)$
or $(3 d) S(m+1, k)=1+(S(m, k)+e(m)-1) \bmod T(m+1, k)$
For $m \geq k$, (3c) and (3d) are equivalent, but for $m<k$, only (3d) takes into account the condition
(4) $S(m+1, k) \leq T(m+1, k)$
which is necessary because the survivor's place number cannot exceed the number of people.
We start the recurrence with $\mathrm{m}=1$ and $\mathrm{T}(1, \mathrm{k})=\mathrm{S}(1, \mathrm{k})=1$ and then use (3abd).
End of derivation.
IV) Comparison with similar sequences

Example k=4:
(5a) $(\mathrm{T}(\mathrm{m}, \mathrm{k}), \mathrm{S}(\mathrm{m}, \mathrm{k}))=(1,1),(2,1),(3,2),(4,2),(5,1),(7,2) \ldots$
Formally, we can disregard (4), using (3c) instead of (3d), and start with $\tilde{S}(1, \mathrm{k})=\mathrm{k}$.
This yields:
(5b) $(\tilde{T}(\mathrm{~m}, \mathrm{k}), \tilde{S}(\mathrm{~m}, \mathrm{k}))=(1,4),(1,3),(1,2),(\mathbf{1}, \mathbf{1}),(2,3),(2,1),(3,2),(4,2),(5,1),(7,2) \ldots$
Note that (5a) is a subsequence of (5b).
$\tilde{T}(\mathrm{~m}, \mathrm{k})=1,1,1,1,2,2,3,4,5,7 \ldots$ can be compared with A072493, defined by

$$
\text { (6a) } \mathrm{a}(\mathrm{~m})=\left\lceil\sum_{\mathrm{i}=1}^{\mathrm{m}-1} \frac{\mathrm{a}(\mathrm{i})}{\mathrm{k}-1}\right\rceil \text { with (6b) } \mathrm{a}(1)=1
$$

(6a) can be written as

$$
\mathrm{Z}(\mathrm{~m})=\sum_{\mathrm{i}=1}^{\mathrm{m}-1} \mathrm{a}(\mathrm{i}), \mathrm{a}(\mathrm{~m})=\left\lceil\frac{\mathrm{Z}(\mathrm{~m})}{\mathrm{k}-1}\right\rceil=\frac{\mathrm{Z}(\mathrm{~m})+\mathrm{b}(\mathrm{~m})}{\mathrm{k}-1} \text { with } 0 \leq b(m)<k-1
$$

For $\mathrm{k}=4$, we find

$$
(7)(a(m), b(m))=(1,3),(1,2),(1,1),(1,0),(2,2),(2,0),(3,1),(4,1),(5,0),(7,1) \ldots
$$

Comparison: (8) $\mathrm{a}(\mathrm{m})=\tilde{T}(\mathrm{~m}, \mathrm{k}), \mathrm{b}(\mathrm{m})=\tilde{S}(\mathrm{~m}, \mathrm{k})-1$
This is true for any $\mathrm{k}>1$ (proof by full induction).
Therefore, the sequences $\mathrm{a}(\mathrm{m})$ and $\mathrm{T}(\mathrm{m}, \mathrm{k})$ can be made equal by removing repeated terms in $a(m)$.

