login
A348418
a(n) is the smallest k with rank((Z/kZ)*) = n such that there are an odd number of coprime squares modulo k.
2
1, 3, 8, 24, 168, 1848, 35112, 807576, 25034856, 1076498808, 50595443976, 2985131194584, 200003790037128, 14200269092636088, 1121821258318250952, 93111164440414829016, 9590449937362727388648, 1026178143297811830585336, 130324624198822102484337672
OFFSET
0,2
COMMENTS
The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G. In particular, rank((Z/kZ)*) = 0 if k <= 2 and A046072(k) otherwise.
The number of coprime squares modulo a(n) is given by A046073(a(n)) = A348420(n-2) for n >= 2.
a(n) is the least k such that the Sylow 2-subgroup of (Z/kZ)* is (C_2)^n. - Jianing Song, Aug 13 2023
LINKS
FORMULA
a(n) = 8 * A078586(n-2) = 8 * (Product_{k=1..n-2} A002145(k)) for n > 2.
EXAMPLE
a(2) = 8;
a(3) = 8 * 3 = 24;
a(4) = 8 * 3 * 7 = 168;
a(5) = 8 * 3 * 7 * 11 = 1848;
a(6) = 8 * 3 * 7 * 11 * 19 = 35112.
PROG
(PARI) a(n) = if(n<=2, [1, 3, 8][n+1], my(t=8); forprime(p=2, , if(p%4==3, t*=p; if(n--<3, return(t))))) \\ following Charles R Greathouse IV's program for A078586
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Oct 18 2021
STATUS
approved