OFFSET
2,1
COMMENTS
The length of row n is 2*A002541(n), for n >= 2.
The sum of row n is A348391(n). The sum of the proper divisors of row n is A153485(n). The sum of the multiples in row n is A348392(n). Hence, A348391(n) = A153485(n) + A348392(n).
For k = 1 the proper divisor set is empty, and for k > floor(n/2) the set of multiples is empty.
FORMULA
EXAMPLE
The irregular triangle a(n, m), m = 1, 2, ..., 2*A002541(n) begins:
(members for k = 1, 2, ..., n are separated by a vertical bar, and the proper divisors and multiples are separated by a comma)
n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...
-----------------------------------------------------------------------------------
2: 2|1
3: 2 3|1|1
4: 2 3 4|1,4|1|1 2
5: 2 3 4 5|1,4|1|1 2| 1
6: 2 3 4 5 6|1,4 6| 1, 6| 1 2| 1| 1 2 3
7: 2 3 4 5 6 7|1,4 6| 1, 6| 1 2| 1| 1 2 3| 1
8: 3 4 5 6 7 8|1,4 6 8| 1 ,6| 1 2 ,8| 1| 1 2 3| 1| 1 2 4
9: 2 3 4 5 6 7 8 9| 1, 4 6 8| 1, 6 9| 1 2, 8| 1| 1 2 3| 1| 1 2 4| 1 3
...
n = 10: 2 3 4 5 6 7 8 9 10 | 1, 4 6 8 10 | 1, 6 9 | 1 2, 8 | 1, 10 | 1 2 3 | 1 | 1 2 4 | 1 3 | 1 2 5
-----------------------------------------------------------------------------------
n = 4: d(4, 1) = {}, m(4, 1) = {2, 3, 4}; d(4, 2) = {1}, m(4, 2) = {4}; d(4, 3) = {1}, m(4, 3) = {}; d(4, 4) = {1, 2}, m(4, 4) = {}, This explains row n = 4.
MATHEMATICA
nrows=10; Table[Flatten[Table[Join[Most[Divisors[k]], Range[2k, n, k]], {k, n}]], {n, 2, nrows+1}] (* Paolo Xausa, Nov 23 2021 *)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Nov 07 2021
STATUS
approved