OFFSET
1
COMMENTS
Also characteristic function of numbers k whose symmetric representation of sigma(k) has an even number of parts.
In other words: characteristic function of numbers k whose symmetric representation of sigma(k) has only one vertex on its axis of symmetry.
a(n) is also the parity of the number of vertices in the symmetric representation of sigma(n).
LINKS
FORMULA
a(n) = 1 - A347950(n).
a(n) = [A067742(n) == 0], where [ ] is the Iverson bracket. - Antti Karttunen, Oct 14 2021
a(n) = 2 - A348364. - Omar E. Pol, Oct 30 2021
EXAMPLE
For n = 14 the divisors of 14 are [1, 2, 7, 14]. There are no middle divisors of 14, so a(14) = 1.
On the other hand the symmetric representation of sigma(14) has two parts [12, 12]. The number of parts is even, so a(14) = 1.
For n = 15 the divisors of 15 are [1, 3, 5, 15]. There are two middle divisors of 15: [3, 5], so a(15) = 0.
On the other hand the symmetric representation of sigma(15) has three parts: [8, 8, 8]. The number of parts is odd, so a(15) = 0.
MATHEMATICA
a[n_] := Boole[DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &] == 0]; Array[a, 100] (* Amiram Eldar, Oct 13 2021 *)
PROG
(PARI)
(Python)
from sympy import divisors
def a(n):
return 1 - any(n/2 <= d*d < 2*n for d in divisors(n, generator=True))
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Oct 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 12 2021
STATUS
approved