OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..277
FORMULA
a(n) = A039755(3*n-1,2*n-1) for n > 0.
a(n) = (-1/(2^(2*n-1) * (2*n-1)!)) * Sum_{k=0..2*n-1} (-1)^k * (2*k+1)^(3*n-1) * binomial(2*n-1,k) for n > 0.
a(n) ~ 3^(3*n - 1/2) * n^(n - 1/2) / (sqrt(2*Pi*(1-c)) * (3 - 2*c)^n * c^(2*n - 1/2) * exp(n)), where c = -LambertW(-3*exp(-3/2)/2) = 0.62578253420128292... - Vaclav Kotesovec, Oct 02 2021
PROG
(PARI) a(n) = polcoef(1/prod(k=1, 2*n, 1-(2*k-1)*x+x*O(x^n)), n);
(PARI) a(n) = if(n==0, 1, -sum(k=0, 2*n-1, (-1)^k*(2*k+1)^(3*n-1)*binomial(2*n-1, k))/(2^(2*n-1)*(2*n-1)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 28 2021
STATUS
approved