The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347940 Array T(n, k) = Sum_{j=2..n+2} (-1)^(n-j)*Stirling2(n+1, j-1)*j!*j^k/2, for n and k >= 0, read by antidiagonals. 0
 1, 2, 2, 4, 7, 4, 8, 23, 23, 8, 16, 73, 115, 73, 16, 32, 227, 533, 533, 227, 32, 64, 697, 2359, 3451, 2359, 697, 64, 128, 2123, 10133, 20753, 20753, 10133, 2123, 128, 256, 6433, 42655, 118843, 164731, 118843, 42655, 6433, 256, 512, 19427, 177053, 657833, 1220657, 1220657, 657833, 177053, 19427, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS T(m, n) is the number of saturated Cp^m*q^n-transfer systems where Cp^m*q^n is the cyclic group of order p^m*q^n, for m, n >= 0, p and q primes. See Hafeez et al. link page 1. LINKS Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, El. J. Comb., 28 (2021), P4.18. The array seems to appear in Table 6. Usman Hafeez, Peter Marcus, Kyle Ormsby and Angélica Osorno, Saturated and linear isometric transfer systems for cyclic groups of order p^m*q^n, arXiv:2109.08210 [math.AT], 2021. FORMULA T(n,k) = T(k,n). T(n,k) = Sum_{j=0..min(n,k)} (j!*(j+2)!/2)*Stirling2(n+2,j+2;2)*Stirling2(k+2,j+2;2), n,k >= 0, where Stirling2(n,k;2) are the 2-Stirling numbers of the second kind A143494. - Fabián Pereyra, Jan 08 2022 EXAMPLE Array begins:    1   2     4      8      16       32 ...    2   7    23     73     227      697 ...    4  23   115    533    2359    10133 ...    8  73   533   3451   20753   118843 ...   16 227  2359  20753  164731  1220657 ...   32 697 10133 118843 1220657 11467387 ...   ... PROG (PARI) T(n, k) = sum(j=2, n+2, (-1)^(n-j)*stirling(n+1, j-1, 2)*j!*j^k/2); CROSSREFS Columns k=0-1 gives A000079, A083313(n+1). Main diagonal gives A220181(n+1). Cf. A008277 (Stirling2), A143494. Sequence in context: A300937 A300881 A301491 * A208269 A184761 A270227 Adjacent sequences:  A347937 A347938 A347939 * A347941 A347942 A347943 KEYWORD nonn,tabl AUTHOR Michel Marcus, Sep 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)