login
Decimal expansion of a constant related to the asymptotics of A005169.
8

%I #6 Sep 18 2021 05:28:39

%S 5,7,6,1,4,8,7,6,9,1,4,2,7,5,6,6,0,2,2,9,7,8,6,8,5,7,3,7,1,9,9,3,8,7,

%T 8,2,3,5,4,7,2,4,6,6,3,1,1,8,9,7,4,4,6,8,6,8,5,1,5,6,5,3,4,3,1,9,4,6,

%U 8,2,2,9,3,7,4,9,9,2,4,0,2,0,0,3,9,0,7,4,2,2,0,9,9,3,2,9,5,5,0,8,5,0,0,9,6,6

%N Decimal expansion of a constant related to the asymptotics of A005169.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.

%H A. M. Odlyzko and H. S. Wilf, <a href="http://www.jstor.org/stable/2322898">The editor's corner: n coins in a fountain</a>, Amer. Math. Monthly, 95 (1988), 840-843.

%F Lowest root of the equation Sum_{k>=0} (-1)^k * r^(k^2) / QPochhammer(r, r, k) = 0.

%e 0.576148769142756602297868573719938782354724663118974468685156534319...

%t FindRoot[Sum[(-1)^k*r^(k^2)/QPochhammer[r, r, k], {k, 0, 1000}] == 0, {r, 1/2}, WorkingPrecision -> 120]

%Y Cf. A005169, A168445, A226999, A285636, A285903, A285637, A305840.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, Sep 18 2021