login
A347886
Odd numbers k such that sigma(k^2) has an even number of prime factors when counted with multiplicity.
2
1, 7, 9, 11, 13, 15, 19, 23, 25, 29, 31, 43, 47, 51, 53, 63, 67, 73, 77, 79, 81, 83, 85, 91, 97, 99, 103, 105, 111, 113, 117, 121, 123, 127, 133, 135, 143, 147, 157, 161, 163, 165, 171, 175, 177, 179, 183, 185, 191, 195, 197, 199, 203, 205, 207, 209, 211, 213, 217, 223, 225, 227, 233, 239, 241, 243, 245, 247, 251, 253
OFFSET
1,2
COMMENTS
Equally, odd numbers k such that A003415(sigma(k^2)) is even, i.e., k^2 is in A347878. See A235991.
MATHEMATICA
Select[Range[1, 250, 2], EvenQ[PrimeOmega[DivisorSigma[1, #^2]]] &] (* Amiram Eldar, Sep 19 2021 *)
PROG
(PARI) isA347886(n) = ((n%2)&&!(bigomega(sigma(n^2))%2));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 19 2021
STATUS
approved