%I #27 Dec 24 2024 02:43:30
%S 21,53,117,149,181,245,277,309,373,405,437,501,533,565,629,661,693,
%T 757,789,821,885,917,949,1013,1045,1077,1141,1173,1205,1269,1301,1333,
%U 1397,1429,1461,1525,1557,1589,1653,1685
%N a(n) = 32*(n + floor(n/3)) - 11; third column of A347834.
%H Paolo Xausa, <a href="/A347837/b347837.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F a(n) = A347834(n, 2) = A178415(A265667(n), 3), for n >= 1.
%F a(n) = ((3*A047529(n) + 1)*16 - 1)/3 = ((3*(n + floor(n/3)) - 1)*32 - 1)/3 = ((A319451(n) - 1)*32 - 1)/3, for n >= 1.
%F O.g.f.: G(x) = (-11 + 32*x + 32*x^2 + 75*x^3)/((1 - x)*(1 - x^3)), with a(0) = -11.
%p seq(32*(n + floor(n/3)) - 11, n=1..40); # _Peter Luschny_, Oct 10 2021
%t A347837[n_] := 32*(n + Floor[n/3]) - 11; Array[A347837, 50] (* or *)
%t LinearRecurrence[{1, 0, 1, -1}, {21, 53, 117, 149}, 50] (* _Paolo Xausa_, Feb 27 2024 *)
%o (Magma) [32*(n + Floor(n/3)) - 11 : n in [1..60]]; // _Wesley Ivan Hurt_, Oct 10 2021
%Y Cf. A047529 (first column), A178415, A265667, A319451, A347834, A347836 (second column).
%K nonn,easy
%O 1,1
%A _Wolfdieter Lang_, Oct 07 2021