login
A347702
Prime numbers that give a remainder of 1 when divided by the sum of their digits.
3
11, 13, 17, 41, 43, 97, 101, 131, 157, 181, 233, 239, 271, 311, 353, 401, 421, 491, 521, 541, 599, 617, 631, 647, 673, 743, 811, 859, 953, 1021, 1031, 1051, 1093, 1171, 1201, 1249, 1259, 1301, 1303, 1327, 1373, 1531, 1601, 1621, 1801, 1871, 2029, 2111, 2129, 2161
OFFSET
1,1
LINKS
EXAMPLE
97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1.
MAPLE
select(t -> isprime(t) and t mod convert(convert(t, base, 10), `+`) = 1, [seq(i, i=3..10000, 2)]); # Robert Israel, Mar 05 2024
MATHEMATICA
Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* Amiram Eldar, Sep 10 2021 *)
PROG
(Python)
from sympy import primerange
def ok(p): return p%sum(map(int, str(p))) == 1
print(list(filter(ok, primerange(1, 2130)))) # Michael S. Branicky, Sep 10 2021
(PARI) isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ Michel Marcus, Sep 10 2021
CROSSREFS
Subsequence of A209871.
A259866 \ {31}, and the primes associated with A056804 \ {1, 2} and A056797 are subsequences.
Sequence in context: A375091 A032502 A209871 * A167794 A019336 A104070
KEYWORD
nonn,base
AUTHOR
Burak Muslu, Sep 10 2021
STATUS
approved