login
A347615
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k.
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 22, 30, 5, 1, 1, 1, 231, 3010, 231, 7, 1, 1, 1, 8349, 18004327, 1741630, 1958, 11, 1, 1, 1, 1741630, 133978259344888, 365749566870782, 3163127352, 17977, 15, 1, 1, 1, 4351078600, 233202632378520643600875145, 61847822068260244309086870983975, 1606903190858354689128371, 15285151248481, 173525, 22, 1
OFFSET
0,9
FORMULA
T(n,k) = A000041(n^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 5, 22, 231, ...
1, 3, 30, 3010, 18004327, ...
1, 5, 231, 1741630, 365749566870782, ...
PROG
(PARI) T(n, k) = numbpart(n^k);
CROSSREFS
Columns k=0..3 give A000012, A000041, A072213, A128854.
Rows n=0+1, 2-10 give A000012, A068413, A248728, A068413(2*n), A248730, A248732, A248734, A068413(3*n), A248728(2*n), A070177.
Main diagonal gives A347607.
Sequence in context: A111673 A121391 A375555 * A241194 A352893 A008326
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 08 2021
STATUS
approved