login
A347548
Number of partitions of n into 3 or more distinct parts.
12
1, 1, 2, 3, 5, 6, 9, 11, 15, 19, 24, 29, 37, 44, 54, 65, 78, 92, 110, 129, 152, 178, 208, 241, 281, 324, 374, 431, 495, 567, 650, 741, 845, 962, 1093, 1239, 1405, 1588, 1794, 2025, 2281, 2566, 2886, 3239, 3633, 4071, 4556, 5093, 5691, 6350, 7080, 7888, 8779, 9762, 10850
OFFSET
6,3
FORMULA
G.f.: Sum_{k>=3} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).
a(n) = A000009(n) - floor((n + 1)/2). - Vaclav Kotesovec, Sep 14 2021
MATHEMATICA
nmax = 60; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 3, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 06 2021
STATUS
approved