login
A347467
Numbers h such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some k.
4
1, 4, 6, 9, 11, 14, 16, 17, 18, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 59, 60, 61, 64, 65, 66, 68, 70, 71, 73, 76, 78, 81, 83, 86, 88, 91, 93, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110, 113
OFFSET
1,2
EXAMPLE
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...)
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...)
Intersection: (1,5,8,12,...), as in A346308.
a(2) = 4 because floor(3*sqrt(3)) = floor(4*sqrt(2)). (For each such h, there is only one such k.)
MATHEMATICA
z = 200; r = Sqrt[2]; s = Sqrt[3];
u = Table[Floor[n r], {n, 0, z}]; (*A001951*)
v = Table[Floor[n s], {n, 1, z}]; (*A022838*)
w = Intersection[u, v] (*A346308*)
zz = -1 + Length[w];
Table[Ceiling[w[[n]]/r], {n, 1, zz}] (* A347467 *)
Table[Ceiling[w[[n]]/s], {n, 1, zz}] (* A347468 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 16 2021
STATUS
approved