OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has integer reverse-alternating product.
EXAMPLE
The prime indices of 525 are {2,3,3,4}, with reverse-alternating product 2, so 525 is in the sequence
The prime indices of 135 are {2,2,2,3}, with reverse-alternating product 3/2, so 135 is not in the sequence.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Select[Range[100], IntegerQ[altprod[Reverse[primeMS[#]]]]&]
CROSSREFS
The reciprocal version is A028982.
Factorizations of this type are counted by A347437.
These partitions are counted by A347446.
The reverse reciprocal version A347451.
The odd-length case is A347453.
The reverse version is A347454.
The complement is A347455.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 26 2021
STATUS
approved