OFFSET
1,2
COMMENTS
First differs from A265640 in having 42.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also Heinz numbers of partitions with integer reverse-alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The terms and their prime indices begin:
1: {} 20: {1,1,3} 47: {15}
2: {1} 23: {9} 48: {1,1,1,1,2}
3: {2} 25: {3,3} 49: {4,4}
4: {1,1} 27: {2,2,2} 50: {1,3,3}
5: {3} 28: {1,1,4} 52: {1,1,6}
7: {4} 29: {10} 53: {16}
8: {1,1,1} 31: {11} 59: {17}
9: {2,2} 32: {1,1,1,1,1} 61: {18}
11: {5} 36: {1,1,2,2} 63: {2,2,4}
12: {1,1,2} 37: {12} 64: {1,1,1,1,1,1}
13: {6} 41: {13} 67: {19}
16: {1,1,1,1} 42: {1,2,4} 68: {1,1,7}
17: {7} 43: {14} 71: {20}
18: {1,2,2} 44: {1,1,5} 72: {1,1,1,2,2}
19: {8} 45: {2,2,3} 73: {21}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Select[Range[100], IntegerQ[altprod[primeMS[#]]]&]
CROSSREFS
The even-length case is A000290.
The additive version is A026424.
Factorizations of this type are counted by A347437.
Allowing any alternating product <= 1 gives A347450.
The reciprocal version is A347451.
The odd-length case is A347453.
A344606 counts alternating permutations of prime indices.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 26 2021
STATUS
approved